
ECS455 Chapter 2

Cellular Systems

2.4 Traffic Handling Capacity and Erlang B Formula

Dr.Prapun Suksompong prapun.com/ecs455

Capacity Concept: A Revisit

- Q: If I have *m* channels per cell, is it true that my cell can support only *m* users?
- A:Yes and No
- Let's try one example.
- How often do you make a call?
 - 3 calls a day, on average.
- How long is the call?
 - 10 mins (per call), on average.
- So, one person uses

Capacity Concept: A Revisit

- If we can "give" the time that "User 1" is idle to other users,
 - then one channel can support users!!
- True?

New Concepts for a New Look at Capacity

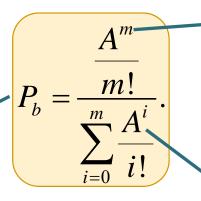
- We can let more than one user share a channel by using it at different times.
- **Blocked call** happens if a user requests to make a call when all the channels are occupied by other users.
- Probability of (call) blocking: P_b
 - The likelihood that a call is blocked because there is no available channel.
 - 1%, 2%, 5%
- In which case, the number of users that a cell can support can exceed S/N.
 - How much larger depends strongly on the value of P_b that can be tolerated.

Trunking

• Allow a large number (*n*) of users to **share** the relatively small number (m) of channels in a cell (or a sector) by providing access to each user, **on demand**, from a **pool** of available channels.

	Omnidirectional	120° Sectoring	60° Sectoring
#sectors/cell	1	3	6
#channels/sector	$m = \lfloor S/N \rfloor$	$m = \left\lfloor \frac{S}{N} / 3 \right\rfloor$	$m = \left\lfloor \frac{S}{N} / 6 \right\rfloor$

- Exploit the statistical behavior of users.
- Each user is allocated a channel on a per call basis, and upon termination of the call, the previously occupied channel is immediately returned to the pool of available channels.


Common Terms (1)

- Traffic Intensity: Measure of channel time utilization (traffic load / amount of traffic), which is the average channel occupancy measured in Erlangs.
 - Dimensionless
 - Denoted by A.
- Holding Time: Average duration of a typical call.
 - Denoted by $H = 1/\mu$.
- Request Rate: The average number of call requests per unit time. Denoted by λ .
- Use A_u and λ_u to denote the corresponding quantities for one user.
- Note that $A = nA_u$ and $\lambda = n\lambda_u$ where n is the number of users supported by the pool (trunked channels) under consideration.

Common Terms (2)

- **Blocked Call**: Call which cannot be completed at time of request, due to congestion.
 - Also referred to as a **lost call**.
- **Grade of Service (GOS)**: A measure of congestion which is specified as the probability of a call being blocked (for Erlang B).
 - The AMPS cellular system is designed for a GOS of 2% blocking.
 - This implies that the channel allocations for cell sites are designed so that, on average, 2 out of 100 calls will be blocked due to channel occupancy during the busiest hour.

Erlang B Formula

Call blocking probability

In MATLAB, use
erlangb(m,A)

 $^{\sim}A = \text{traffic intensity or load [Erlangs]}$

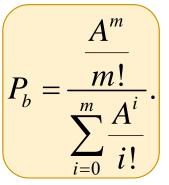
 \rightarrow m = Number of trunked channels

$$= \frac{\lambda}{\mu}$$

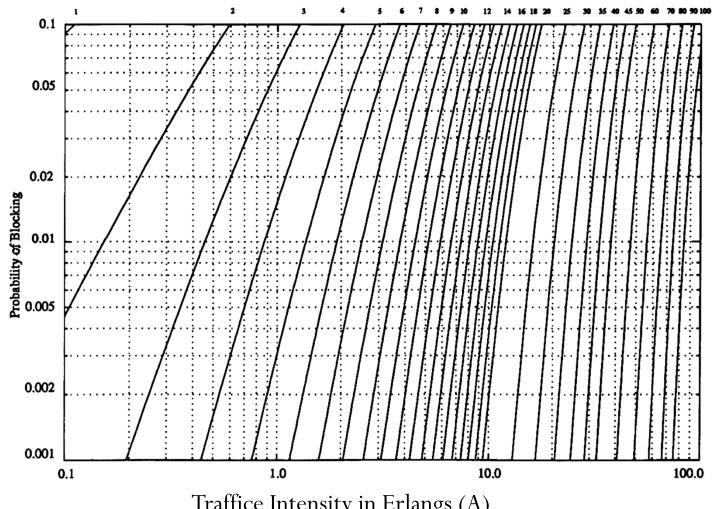
$$\lambda = \text{Average } \# \text{ call}$$

$$\text{attempts/requests per unit}$$

$$\text{time}$$


$$\frac{1}{\mu} = H = \text{Average call length}$$

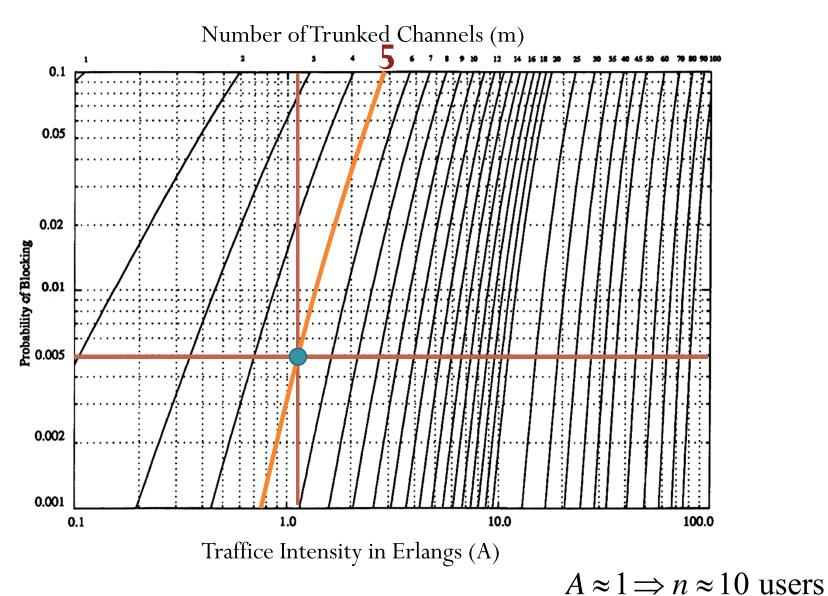
→We use the MATLAB code from http://infohost.nmt.edu/~borchers/erlang.html to evaluate the Erlang B formula.


M/M/m/m Assumption

- Blocked calls cleared
 - No queuing for call requests.
 - For every user who requests service, there is no setup time and the user is given immediate access to a channel if one is available.
 - If no channels are available, the requesting user is blocked without access and is free to try again later.
- Calls arrive as determined by a *Poisson process*.
- There are memoryless arrivals of requests, implying that all users, including blocked users, may request a channel at any time.
- There are an **infinite** number of users (with finite overall request rate).
 - The finite user results always predict a smaller likelihood of blocking. So, assuming infinite number of users provides a conservative estimate.
- The duration of the time that a user occupies a channel is *exponentially distributed*, so that longer calls are less likely to occur.
- There are *m* channels available in the trunking pool.
 - For us, m = the number of channels for a cell (C) or for a sector

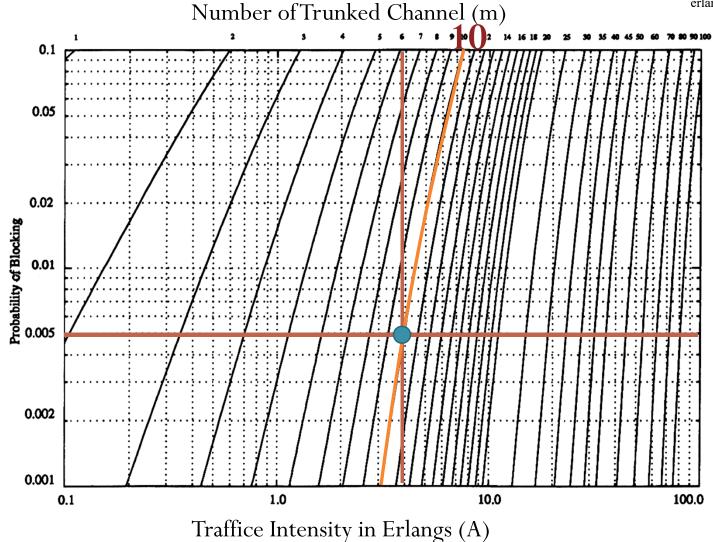
Erlang B Formula and Chart

Number of Trunked Channels (m)



Traffice Intensity in Erlangs (A)

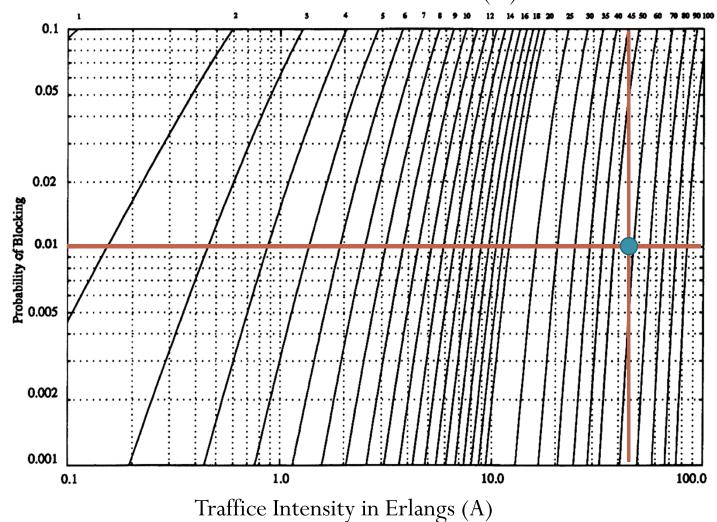
Example 1


- How many users can be supported for 0.5% blocking probability for the following number of trunked channels in a blocked calls cleared system?
 - (a) 5
 - (b) 10
- Assume each user generates $A_u = 0.1$ Erlangs of traffic.

Example 1a

Example 1b

erlangb (10,3.5) = 0.0023erlangb (10,3.8) = 0.0039erlangb (10,3.9) = 0.0046erlangb (10,3.95) = 0.0049erlangb (10,3.96) = 0.0050erlangb (10,3.97) = 0.0051erlangb (10,4) = 0.0053

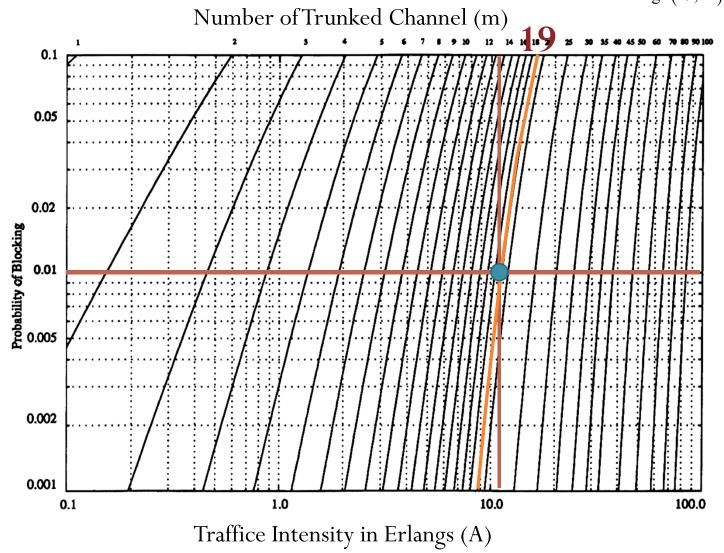

Example 2.1

- Consider a cellular system in which
 - an average call lasts two minutes
 - the probability of blocking is to be no more than 1%.
- If there are a total of 399 traffic channels for a seven-cell reuse system, there will be 57 traffic channels per cell.
- From the Erlang B formula, can handle 44.2 Erlangs or 1326 calls per hour.

Example 2.1: Erlang B

erlangb(57,44) = 0.0094erlangb(57,44.2) = 0.0099erlangb(57,44.3) = 0.0102erlangb(57,44.5) = 0.0109erlangb(57,45) = 0.0125

Number of Trunked Channels (m)



Example 2.2

- Now employing 120° sectoring, there are only m = 57/3 = 19 channels per sector.
- For the same probability of blocking and average call length, each sector can handle 11.2 Erlangs or 336 calls per hour.
- Since each cell consists of three sectors, this provides a cell capacity of $3 \times 336 = 1008$ calls per hour, which amounts to a 24% decrease when compared to the unsectored case.
- Thus, sectoring decreases the **trunking efficiency** while improving the SIR for each user in the system.

Example 2.2: Erlang B

erlangb (19,11) = 0.0085erlangb (19,11.2) = 0.0098erlangb (19,11.3) = 0.0105erlangb (19,11.5) = 0.0120erlangb (19,12) = 0.0165

Erlang B Trunking Efficiency

Number of			Capacity (Erlangs) for GOS		
	hannels m	= 0.01	= 0.005	= 0.002	= 0.1% = 0.001
	2	0.153	0.105	0.065	0.046
	4	0.869	0.701	0.535	0.439
	5	1.36	1.13	0.900	0.762
	10	4.46	3.96	3.43	3.09
\neg	20	12.0	11.1	10.1	9.41
	24	15.3	14.2	13.0	12.2
	40	29.0	27.3	25.7	24.5
	70	56.1	53.7	51.0	49.2
	100	84.1	80.9	77.4	75.2

Summary of Chapter 2: Big Picture

S = total # available duplex radio channels for the system

Path loss exponent

"Capacity"
$$C = \frac{A_{\text{total}}}{A_{\text{cell}}} \times \frac{S}{N}$$
 Tradeoff $\frac{S}{I} \approx \frac{kR^{-\gamma}}{K \times (kD^{-\gamma})} = \frac{1}{K} \left(\frac{D}{R}\right)^{\gamma} = \frac{1}{K} \left(\sqrt{3N}\right)^{\gamma}$

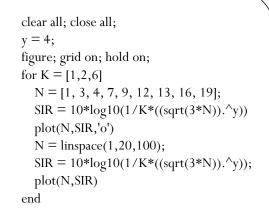
Omni-directional: $K = 6$
120° Sectoring: $K = 2$
60° Sectoring: $K = 1$

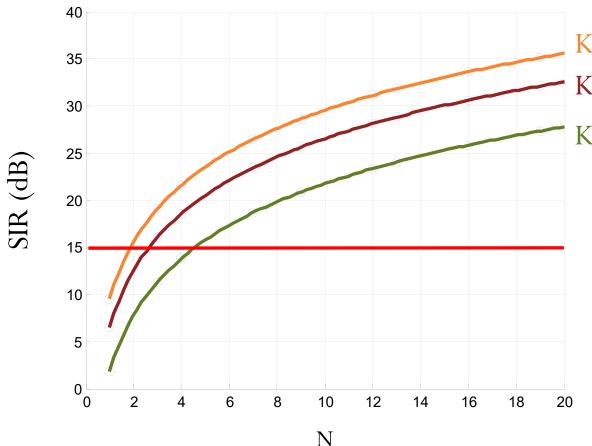
Trunking $M = \#$ trunked channels

 $M = \text{Trunking} = \frac{M}{N} \times \frac{M$

Example 3: System Design (1)

- 20 MHz of total spectrum.
- Each simplex channel has 25 kHz RF bandwidth.
- The number of duplex channels:


$$S = \frac{20 \times 10^6}{2 \times 25 \times 10^3} = 400$$
 channels


- Design requirements:
 - SIR \geq 15 dB
 - $P_b \le 5\%$
- Goal: Maximize the number of users that can be supported by the system.
- Question:
 - N = ?
 - Should we use sectoring?

Example 3 (2)

• SIR \geq 15 dB

$$K = 2 \rightarrow N = 3$$

$$K = 6 \rightarrow N = 7$$

Example 3 (3)

	Omnidirectional	120° Sectoring	60° Sectoring
K	6	2	1
N	7	3	3
SIR [dB]	18.7	16.1	19.1
#channels/cell	[400/7] = 57	[400/3] = 133	[400/3] = 133
#sectors/cell	1	3	6
m = #channels/sector	57	$\left\lfloor \frac{400}{3} / 3 \right\rfloor = 44$	$\left\lfloor \frac{400}{3} / 6 \right\rfloor = 22$
A [Erlangs]/sector	51.55	38.56	17.13
A [Erlangs]/cell	51.55	$38.56 \times 3 = 115.68$	$17.13 \times 6 = 102.78$
#users/cell	18558	41645	37001

Assume that each user makes 2 calls/day and 2 min/call on average \rightarrow 1/360 Erlangs.

Conclusion: With $\gamma = 4$, SIR ≥ 15 dB, and Pb $\leq 5\%$, 120° sectoring with cluster size N = 3 should be used.

Example 3 (4): Remarks

	Omnidirectional	120° Sectoring	60° Sectoring
K	6	2	1
N	7	7	7
SIR [dB]	18.7	23.43	26.44
#channels/cell	[400/7] = 57	[400/7] = 57	[400/7] = 57
#sectors/cell	1	3	6
m = #channels/sector	57	$\left\lfloor \frac{400}{7}/3 \right\rfloor = 19$	$\left\lfloor \frac{400}{7}/6 \right\rfloor = 9$
A [Erlangs]/sector	51.55	14.31	5.37
A [Erlangs]/cell	51.55	$14.31 \times 3 = 42.94$	$5.37 \times 6 = 32.22$

For the same *N*, we see that 120° sectoring and 60° sectoring give much better SIR. However, sectoring reduces the trunking efficiency and therefore suffer reduced value of A.

	Omnidirectional	120° Sectoring	60° Sectoring
K	6	2	1
N	7	7	7
SIR [dB]	18.7	23.43	26.44
#channels/cell	[400/7] = 57	[400/7] = 57	[400/7] = 57
#sectors/cell	1	3	6
m = #channels/sector	57	$\left\lfloor \frac{400}{7}/3 \right\rfloor = 19$	$\left\lfloor \frac{400}{7} / 6 \right\rfloor = 9$
A [Erlangs]/sector	51.55	14.31	5.37
A [Erlangs]/cell	51.55	$14.31 \times 3 = 42.94$	$5.37 \times 6 = 32.22$

Idea: The values of SIR are too high for the cases of 120° sectoring and 60° sectoring. We can further reduce the cluster size. This increases the number of channels per cell and hence per sector.

	Omnidirectional	120° Sectoring	60° Sectoring
K	6	2	1
N	7	3	3
SIR [dB]	18.7	16.1	19.1
#channels/cell	[400/7] = 57	[400/3] = 133	[400/3] = 133
#sectors/cell	1	3	6
m = #channels/sector	57	$\left\lfloor \frac{400}{3}/3 \right\rfloor = 44$	$\left[\frac{400}{3}/6\right] = 22$
A [Erlangs]/sector	51.55	38.56	17.13
A [Erlangs]/cell	51.55	$38.56 \times 3 = 115.68$	$17.13 \times 6 = 102.78$